Coping with imperfect data

Introduction

One of the challenges for corpus linguists is that many of the distinctions that we wish to make are either not annotated in a corpus at all or, if they are represented in the annotation, unreliably annotated. This issue frequently arises in corpora to which an algorithm has been applied, but where the results have not been checked by linguists, a situation which is unavoidable with mega-corpora. However, this is a general problem. We would always recommend that cases be reviewed for accuracy of annotation.

A version of this issue also arises when checking for the possibility of alternation, that is, to ensure that items of Type A can be replaced by Type B items, and vice-versa. An example might be epistemic modal shall vs. will. Most corpora, including richly-annotated corpora such as ICE-GB and DCPSE, do not include modal semantics in their annotation scheme. In such cases the issue is not that the annotation is “imperfect”, rather that our experiment relies on a presumption that the speaker has the choice of either type at any observed point (see Aarts et al. 2013), but that choice is conditioned by the semantic content of the utterance.

Continue reading

Advertisements

Binomial → Normal → Wilson

Introduction

One of the questions that keeps coming up with students is the following.

What does the Wilson score interval represent, and why is it the right way to calculate a confidence interval based around an observation? 

In this blog post I will attempt to explain, in a series of hopefully simple steps, how we get from the Binomial distribution to the Wilson score interval. I have written about this in a more ‘academic’ style elsewhere, but I haven’t spelled it out in a blog post.
Continue reading

Capturing patterns of linguistic interaction

Abstract Full Paper (PDF)

Numerous competing grammatical frameworks exist on paper, as algorithms and embodied in parsed corpora. However, not only is there little agreement about grammars among linguists, but there is no agreed methodology for demonstrating the benefits of one grammar over another. Consequently the status of parsed corpora or ‘treebanks’ is suspect.

The most common approach to empirically comparing frameworks is based on the reliable retrieval of individual linguistic events from an annotated corpus. However this method risks circularity, permits redundant terms to be added as a ‘solution’ and fails to reflect the broader structural decisions embodied in the grammar. In this paper we introduce a new methodology based on the ability of a grammar to reliably capture patterns of linguistic interaction along grammatical axes. Retrieving such patterns of interaction does not rely on atomic retrieval alone, does not risk redundancy and is no more circular than a conventional scientific reliance on auxiliary assumptions. It is also a valid experimental perspective in its own right.

We demonstrate our approach with a series of natural experiments. We find an interaction captured by a phrase structure analysis between attributive adjective phrases under a noun phrase with a noun head, such that the probability of adding successive adjective phrases falls. We note that a similar interaction (between adjectives preceding a noun) can also be found with a simple part-of-speech analysis alone. On the other hand, preverbal adverb phrases do not exhibit this interaction, a result anticipated in the literature, confirming our method.

Turning to cases of embedded postmodifying clauses, we find a similar fall in the additive probability of both successive clauses modifying the same NP and embedding clauses where the NP head is the most recent one. Sequential postmodification of the same head reveals a fall and then a rise in this additive probability. Reviewing cases, we argue that this result can only be explained as a natural phenomenon acting on language production which is expressed by the distribution of cases on an embedding axis, and that this is in fact empirical evidence for a grammatical structure embodying a series of speaker choices.

We conclude with a discussion of the implications of this methodology for a series of applications, including optimising and evaluating grammars, modelling case interaction, contrasting the grammar of multiple languages and language periods, and investigating the impact of psycholinguistic constraints on language production.

Continue reading

Why ‘Wald’ is Wrong: once more on confidence intervals

Introduction

The idea of plotting confidence intervals on data, which is discussed in a number of posts elsewhere on this blog, should be straightforward. Everything we observe is uncertain, but some things are more certain than others! Instead of marking an observation as a point, its better to express it as a ‘cloud’, an interval representing a range of probabilities.

But the standard method for calculating intervals that most people are taught is wrong.

The reasons why are dealt with in detail in (Wallis 2013). In preparing this paper for publication, however, I came up with a new demonstration, using real data, as to why this is the case.

Continue reading

Freedom to vary and significance tests

Introduction

Statistical tests based on the Binomial distribution (z, χ², log-likelihood and Newcombe-Wilson tests) assume that the item in question is free to vary at each point. This simply means that

  • If we find f items under investigation (what we elsewhere refer to as ‘Type A’ cases) out of N potential instances, the statistical model of inference assumes that it must be possible for f to be any number from 0 to N.
  • Probabilities, p = f / N, are expected to fall in the range [0, 1].

Note: this constraint is a mathematical one. All we are claiming is that the true proportion in the population could conceivably range from 0 to 1. This property is not limited to strict alternation with constant meaning (onomasiological, “envelope of variation” studies). In semasiological studies, where we evaluate alternative meanings of the same word, these tests can also be legitimate.

However, it is common in corpus linguistics to see evaluations carried out against a baseline containing terms that simply cannot plausibly be exchanged with the item under investigation. The most obvious example is statements of the following type: “linguistic Item x increases per million words between category 1 and 2”, with reference to a log-likelihood or χ² significance test to justify this claim. Rarely is this appropriate.

Some terminology: If Type A represents say, the use of modal shall, most words will not alternate with shall. For convenience, we will refer to cases that will alternate with Type A cases as Type B cases (e.g. modal will in certain contexts).

The remainder of cases (other words) are, for the purposes of our study, not evaluated. We will term these invariant cases Type C, because they cannot replace Type A or Type B.

In this post I will explain that not only does introducing such ‘Type C’ cases into an experimental design conflate opportunity and choice, but it also makes the statistical evaluation of variation more conservative. Not only may we mistake a change in opportunity as a change in the preference for the item, but we also weaken the power of statistical tests and tend to reject significant changes (in stats jargon, “Type II errors”).

This problem of experimental design far outweighs differences between methods for computing statistical tests. Continue reading

Change and certainty: plotting confidence intervals (2)

Introduction

In a previous post I discussed how to plot confidence intervals on observed probabilities. Using this method we can create graphs like the following. (Data is in the Excel spreadsheet we used previously: for this post I have added a second worksheet.)

The graph depicts both the observed probability of a particular form and the certainty that this observation is accurate. The ‘I’-shaped error bars depict the estimated range of the true value of the observation at a 95% confidence level (see Wallis 2013 for more details).

A note of caution: these probabilities are semasiological proportions (different uses of the same word) rather than onomasiological choices (see Choice vs. use).

An example graph plot showing the changing proportions of meanings of the verb think over time in the US TIME Magazine Corpus, with Wilson score intervals, after Levin (2013). Many thanks to Magnus for the data!

In this post I discuss ways in which we can plot intervals on changes (differences) rather than single probabilities.

The clearer our visualisations, the better we can understand our own data, focus our explanations on significant results and communicate our results to others. Continue reading

Plotting confidence intervals on graphs

So: you’ve got some data, you’ve read up on confidence intervals and you’re convinced. Your data is a small sample from a large/infinite population (all of contemporary US English, say), and therefore you need to estimate the error in every observation. You’d like to plot a pretty graph like the one below, but you don’t know where to start.

An example graph plot showing the changing proportions of meanings of the verb think over time in the US TIME Magazine Corpus, with Wilson score intervals, after Levin (2013). Many thanks to Magnus for the data!

Of course this graph is not just pretty.

Continue reading