UCL Summer School in English Corpus Linguistics 2016

I am pleased to announce the fourth annual Summer School in English Corpus Linguistics to be held at University College London from 6-8 July.

The Summer School is a short three-day intensive course aimed at PhD-level students and researchers who wish to get to grips with Corpus Linguistics. Numbers are deliberately limited on a first-come, first-served basis. You will be taught in a small group by a teaching team.

Each day begins with a theory lecture, followed by a guided hands-on workshop with corpora, and a more self-directed and supported practical session in the afternoon.

Aims and objectives of the course

Over the three days, participants will learn about the following:

  • the scope of Corpus Linguistics, and how we can use it to study the English Language;
  • key issues in Corpus Linguistics methodology;
  • how to use corpora to analyse issues in syntax and semantics;
  • basic elements of statistics;
  • how to navigate large and small corpora, particularly ICE-GB and DCPSE.

Learning outcomes

At the end of the course, participants will have:

  • acquired a basic but solid knowledge of the terminology, concepts and methodologies used in English Corpus Linguistics;
  • had practical experience working with two state-of-the-art corpora and a corpus exploration tool (ICECUP);
  • have gained an understanding of the breadth of Corpus Linguistics and the potential application for projects;
  • have learned about the fundamental concepts of inferential statistics and their practical application to Corpus Linguistics.

For more information, including costs, booking information, timetable, see the website.

See also

Coping with imperfect data


One of the challenges for corpus linguists is that many of the distinctions that we wish to make are either not annotated in a corpus at all or, if they are represented in the annotation, unreliably annotated. This issue frequently arises in corpora to which an algorithm has been applied, but where the results have not been checked by linguists, a situation which is unavoidable with mega-corpora. However, this is a general problem. We would always recommend that cases be reviewed for accuracy of annotation.

A version of this issue also arises when checking for the possibility of alternation, that is, to ensure that items of Type A can be replaced by Type B items, and vice-versa. An example might be epistemic modal shall vs. will. Most corpora, including richly-annotated corpora such as ICE-GB and DCPSE, do not include modal semantics in their annotation scheme. In such cases the issue is not that the annotation is “imperfect”, rather that our experiment relies on a presumption that the speaker has the choice of either type at any observed point (see Aarts et al. 2013), but that choice is conditioned by the semantic content of the utterance.

Continue reading

A methodological progression

(with thanks to Jill Bowie)


One of the most controversial arguments in corpus linguistics concerns the relationship between a ‘variationist’ paradigm comparable with lab experiments, and a traditional corpus linguistics paradigm focusing on normalised word frequencies.

Rather than see these two approaches as diametrically opposed, we propose that it is more helpful to view them as representing different points on a methodological progression, and to recognise that we are often forced to compromise our ideal experimental practice according to the data and tools at our disposal.

Viewing these approaches as being represented along a progression allows us to step back from any single perspective and ask ourselves how different results can be reconciled and research may be improved upon. It allows us to consider the potential value in performing more computer-aided manual annotation — always an arduous task — and where such annotation effort would be usefully focused.

The idea is sketched in the figure below.

A methodological progression

A methodological progression: from normalised word frequencies to verified alternation.

Continue reading

Three kinds of corpus evidence – and two types of constraint

Text corpora permit researchers to find evidence of three distinct kinds.

1. Frequency evidence of known terms (‘performance’)

Suppose you have a plain text corpus which you attempt to annotate automatically. You apply a computer program to the text. This program can be thought of as comprising three elements: a theoretical framework or ‘scheme’, an algorithm, and a knowledge-base (KB). Terms and constituents in this scheme are applied to the corpus according to the algorithm.

Having done so it should be a relatively simple matter to index those terms in the corpus and obtain frequencies for each one (e.g., how many instances of may are classed as a modal verb, noun, etc). The frequency evidence obtained tells you how the program performed against the real-world data in the corpus. However, if you stop at this point you do not know whether this evidence is accurate or complete.

2. Frequency evidence of unknown terms (‘discovery’)

The process of annotation presents the opportunity for discovery of novel linguistic events. All NLP algorithms have a particular, and inevitably less-than perfect, performance. The system may misclassify some items, misanalyse constituents, or simply fail. Therefore

  1. first-pass frequency evidence is likely to be inaccurate (and potentially incomplete),
  2. errors may be due to inadequacies in the scheme, algorithm or knowledge-base.

In practice we have two choices: amend the system (scheme, KB or algorithm) and/or correct the corpus manually. A law of diminishing returns applies, and a certain amount of manual editing is inevitably necessary. [As a side comment, part-of-speech annotation is relatively accurate, but full parsing is prone to error. As different systems employ different frameworks accuracy rates vary, but one can anticipate around 95% accuracy for POS-tagging and at best 70% accuracy for parsing. In any case, some errors may be impossible to address without a deeper semantic analysis of the sentence than is feasible.]

Continue reading

Inferential statistics – and other animals


Inferential statistics is a methodology of extrapolation from data. It rests on a mathematical model which allows us to predict values in the population based on observations in a sample drawn from that population.

Central to this methodology is the idea of reporting not just the observation itself but also the certainty of that observation. In some cases we can observe the population directly and make statements about it.

  • We can cite the 10 most frequent words in Shakespeare’s First Folio with complete certainty (allowing for spelling variations). Such statements would simply be facts.
  • Similarly, we could take a corpus like ICE-GB and report that in it, there are 14,275 adverbs ending in -ly out of 1,061,263 words.

Provided that we limit the scope of our remarks to the corpus itself, we do not need to worry about degrees of certainty because these statements are simply facts. Statements about the corpus are sometimes called descriptive statistics (the word statistic here being used in its most general sense, i.e. a number). Continue reading

Random sampling, corpora and case interaction


One of the main unsolved statistical problems in corpus linguistics is the following.

Statistical methods assume that samples under study are taken from the population at random.

Text corpora are only partially random. Corpora consist of passages of running text, where words, phrases, clauses and speech acts are structured together to describe the passage.

The selection of text passages for inclusion in a corpus is potentially random. However cases within each text may not be independent.

This randomness requirement is foundationally important. It governs our ability to generalise from the sample to the population.

The corollary of random sampling is that cases are independent from each other.

I see this problem as being fundamental to corpus linguistics as a credible experimental practice (to the point that I forced myself to relearn statistics from first principles after some twenty years in order to address it). In this blog entry I’m going to try to outline the problem and what it means in practice.

The saving grace is that statistical generalisation is premised on a mathematical model. The problem is not all-or-nothing. This means that we can, with care, attempt to address it proportionately.

[Note: To actually solve the problem would require the integration of multiple sources of evidence into an a posteriori model of case interaction that computed marginal ‘independence probabilities’ for each case abstracted from the corpus. This is way beyond what any reasonable individual linguist could ever reasonably be expected to do unless an out-of-the-box solution is developed (I’m working on it, albeit slowly, so if you have ideas, don’t fail to contact me…).]

There are numerous sources of case interaction and clustering in texts, ranging from conscious repetition of topic words and themes, unconscious tendencies to reuse particular grammatical choices, and interaction along axes of, for example, embedding and co-ordination (Wallis 2012a), and structurally overlapping cases (Nelson et al 2002: 272).

In this blog post I first outline the problem and then discuss feasible good practice based on our current technology.  Continue reading

That vexed problem of choice

(with thanks to Jill Bowie and Bas Aarts)

AbstractPaper (PDF)

A key challenge in corpus linguistics concerns the difficulty of operationalising linguistic questions in terms of choices made by speakers or writers. Whereas lab researchers design an experiment around a choice, comparable corpus research implies the inference of counterfactual alternates. This non-trivial requirement leads many to rely on a per million word baseline, meaning that variation separately due to opportunity and choice cannot be distinguished.

We formalise definitions of mutual substitution and the true rate of alternation as useful idealisations, recognising they may not always hold. Analysing data from a new volume on the verb phrase, we demonstrate how a focus on choices available to speakers allows researchers to factor out the effect of changing opportunities to draw conclusions about choices.

We discuss research strategies where alternates may not be easily identified, including refining baselines by eliminating forms and surveying change against multiple baselines. Finally we address three objections that have been made to this framework, that alternates are not reliably identifiable, baselines are arbitrary, and differing ecological pressures apply to different terms. Throughout we motivate our responses by evidence from current research, demonstrating that whereas the problem of identifying choices may be ‘vexed’, it represents a highly fruitful paradigm for corpus linguistics.

Continue reading