### Introduction

I have been recently reviewing and rewriting a paper for publication that I first wrote back in 2011. The paper (Wallis 2019) concerns the problem of how we test whether repeated runs of the same experiment obtain essentially the same results, i.e. results are not significantly different from each other.

These meta-tests can be used to test an experiment for replication: if you repeat an experiment and obtain significantly different results on the first repetition, then, with a 1% error level, you can say there is a 99% chance that the experiment is not replicable.

These tests have other applications. You might be wishing to compare your results with those of others in the literature, compare results with a different operationalisation (definitions of variables), or just compare results obtained with different data – such as comparing a grammatical distribution observed in speech with that found within writing.

The design of tests for this purpose is addressed within the *t*-testing ANOVA community, where tests are applied to continuously-valued variables. The solution concerns a particular version of an ANOVA, called “the test for interaction in a factorial analysis of variance” (Sheskin 1997: 489).

However, anyone using data expressed as discrete alternatives (A, B, C etc) has a problem: the classical literature does not explain what you should do.

### Gradient and point tests

The rewrite of the paper caused me to distinguish between two types of tests: ‘point tests’, which I describe below, and ‘gradient tests’. Continue reading “Point tests and multi-point tests for separability of homogeneity”