Plotting the Wilson distribution

Introduction Full Paper (PDF)

We have discussed the Wilson score interval at length elsewhere (Wallis 2013a, b). Given an observed Binomial proportion p = f / n observations, and confidence level 1-α, the interval represents the two-tailed range of values where P, the true proportion in the population, is likely to be found. Note that f and n are integers, so whereas P is a probability, p is a proper fraction (a rational number).

The interval provides a robust method (Newcombe 1998, Wallis 2013a) for directly estimating confidence intervals on these simple observations. It can take a correction for continuity in circumstances where it is desired to perform a more conservative test and err on the side of caution. We have also shown how it can be employed in logistic regression (Wallis 2015).

The point of this paper is to explore methods for computing Wilson distributions, i.e. the analogue of the Normal distribution for this interval. There are at least two good reasons why we might wish to do this.

The first is to shed insight onto the performance of the generating function (formula), interval and distribution itself. Plotting an interval means selecting a single error level α, whereas visualising the distribution allows us to see how the function performs over the range of possible values for α, for different values of p and n.

A second good reason is to counteract the tendency, common in too many presentations of statistics, to present the Gaussian (‘Normal’) distribution as if it were some kind of ‘universal law of data’, a mistaken corollary of the Central Limit Theorem. This is particularly unwise in the case of observations of Binomial proportions, which are strictly bounded at 0 and 1. Continue reading